Monotone Functions and Maps
نویسنده
چکیده
In [1] we defined semi-monotone sets, as open bounded sets, definable in an o-minimal structure over the reals (e.g., real semialgebraic or subanalytic sets), and having connected intersections with all translated coordinate cones in Rn. In this paper we develop this theory further by defining monotone functions and maps, and studying their fundamental geometric properties. We prove several equivalent conditions for a bounded continuous definable function or map to be monotone. We show that the class of graphs of monotone maps is closed under intersections with affine coordinate subspaces and projections to coordinate subspaces. We prove that the graph of a monotone map is a topologically regular cell. These results generalize and expand the corresponding results obtained in [1] for semi-monotone sets.
منابع مشابه
Some results on $L$-complete lattices
The paper deals with special types of $L$-ordered sets, $L$-fuzzy complete lattices, and fuzzy directed complete posets.First, a theorem for constructing monotone maps is proved, a characterization for monotone maps on an $L$-fuzzy complete lattice is obtained, and it's proved that if $f$ is a monotone map on an $L$-fuzzy complete lattice $(P;e)$, then the least fixpoint of $f$ is meet of a spe...
متن کاملGENERALIZED POSITIVE DEFINITE FUNCTIONS AND COMPLETELY MONOTONE FUNCTIONS ON FOUNDATION SEMIGROUPS
A general notion of completely monotone functionals on an ordered Banach algebra B into a proper H*-algebra A with an integral representation for such functionals is given. As an application of this result we have obtained a characterization for the generalized completely continuous monotone functions on weighted foundation semigroups. A generalized version of Bochner’s theorem on foundation se...
متن کاملDynamical zeta functions for tree maps
We study piecewise monotone and piecewise continuous maps f from a rooted oriented tree to itself, with weight functions either piecewise constant or of bounded variation. We deene kneading coordinates for such tree maps. We show that the Milnor-Thurston relation holds between the weighted reduced zeta function and the weighted kneading determinant of f. This generalizes a result known for piec...
متن کاملar X iv : 1 20 1 . 04 91 v 1 [ m at h . L O ] 2 J an 2 01 2 MONOTONE FUNCTIONS AND MAPS
In [1] we defined semi-monotone sets, as open bounded sets, de-finable in an o-minimal structure over the reals, and having connected intersections with all translated coordinate cones in R n. In this paper we develop this theory further by defining monotone functions and maps, and studying their fundamental geometric properties. We prove several equivalent conditions for a bounded continuous d...
متن کاملDiscrete time monotone systems: Criteria for global asymptotic stability and applications
For two classes of monotone maps on the n-dimensional positive orthant we show that for a discrete dynamical system induced by a map the origin of Rn+ is globally asymptotically stable, if and only if the map Γ is such that for any point in s ∈ R+, s 6= 0, the image-vector Γ(s) is such that at least one component is strictly less than the corresponding component of s. One class is the set of n ...
متن کامل